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Abstract
Patterns in ecology are the products of current factors interacting with history. 
Nevertheless, few studies have attempted to disentangle the contribution of histori-
cal and current factors, such as climate change and pollinator identity and behavior, on 
plant reproduction. Here, we attempted to separate the relative importance of current 
and historical processes on geographical patterns of the mating system of the tree spe-
cies Curatella americana (Dilleniaceae). Specifically, we asked the following: (a) How do 
Quaternary and current climate affect plant mating system? (b) How does current pollina-
tor abundance and diversity relate to plant mating system? (c) How does mating system 
relate to fruit/seed quantity and quality in C. americana? We recorded pollinators (richness, 
frequency, and body size) and performed pollination tests in ten populations of C. ameri-
cana spread over 3,000 km in the Brazilian savannah. The frequency of self-pollination in 
the absence of pollinators was strongly influenced by historical climatic instability and not 
by present-day pollinators. In contrast, seed set from hand-cross and natural pollination 
were affected by pollinators (especially large bees) and temperature, indicating the impor-
tance of current factors on out-cross pollination. Two populations at the Southern edge of 
the species’ distribution showed high level of hand-cross-pollination and high flower visi-
tation by large bees, but also a high level of autogamy resulting from recent colonization. 
Our results indicate that historical instability in climate has favored autogamy, most likely 
as a reproductive insurance strategy facilitating colonization and population maintenance 
over time, while pollinators are currently modulating the level of cross-pollination.
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1  |  INTRODUC TION

Animal pollination is estimated to occur in approximately 87.5% of 
the angiosperms and is particularly prevalent in the warm and humid 
tropics (Ollerton et al., 2011; Rech et al., 2016). In general, there is 
less pollen limitation when the pollination systems are more gen-
eralized, exhibiting a higher probability of pollen being transferred 
to conspecific stigmas (Knight et al., 2005; Lopes et al. submittted). 
Generalized pollination systems are therefore more resistant to pol-
linator species loss, and, hence, they are hypothesized to predomi-
nate in environments where the pollinator fauna is highly variable 
(Waser et al., 1996) or not immediately fitted to the ancestral pollina-
tion mode, such as on islands (Armbruster & Baldwin, 1998; Rivera-
Marchand & Ackerman, 2006; Sonne et al., 2019). More diverse sets 
of pollinators can also be functionally more stable over time and space 
due to the buffering effect of different species responding in differ-
ent ways to environmental changes, that is, the “biodiversity insur-
ance hypothesis” (Bartomeus et al., 2013; Loreau, 2001). However, 
we know very little about the influence of current and past climate 
factors on the functioning of pollination systems.

Plants can also show diverse and complex reproductive strate-
gies related to how to find reproductive partners, resulting in mating 
systems that range from autogamy (independence of pollen vectors) 
to exclusively outcrossed, with everything in-between (Goodwillie 
et al., 2005). Although self-incompatibility usually results in 
higher-quality progeny and genetic diversity (Dart & Eckert, 2013; 
Wright et al., 2013), autogamous self-pollination (hereafter called 
autogamy, see Cardoso et al., 2018) may allow species to colonize 
new areas or survive within ones where conditions are non-optimal 
for pollinators (Grossenbacher et al., 2015; Lloyd & Webb, 1992). 
The idea of autogamy assuring reproduction was originally proposed 
by Darwin (1877) and formalized by Baker (1955, 1967), and has 
been named “Baker's rule” or the “reproductive insurance hypothe-
sis.” A similar rationale was later expanded to small populations living 
at the edges of species distributions, where the lower plant density 
is likely to reduce cross-pollination (Levin, 2012; Randle et al., 2009). 
Mating systems may therefore influence the geographical range of 
plants, with autogamous species having larger ranges due to low 
mate requirement and high reproductive success at the edges of 
their range or in colonizing populations (Grossenbacher et al., 2015). 
Traditionally, mating systems were considered species-level proper-
ties and few comparisons considered differences among populations 
or individuals (Levin, 2012). However, we now know that mating sys-
tems may vary among populations according to local environmental 
conditions (Rech et al., 2018; Whitehead et al., 2018). As with polli-
nation systems, assessing the influence of current and historical fac-
tors on mating systems within populations is an untested approach 
that will improve our understanding of the evolution of plant repro-
ductive strategies.

Historical climate dynamics are likely candidates to affect mat-
ing systems since we already know of their effect on species dis-
tribution and diversity patterns (Cardenas et al., 2011; Kissling 
et al., 2012; Sandel et al., 2011), population demography and genetic 

structure (Cabanne et al., 2007; Grazziotin et al., 2006), and previous 
studies have suggested an influence of historical climate stability on 
the structure of mutualistic plant–pollinator assemblages (Dalsgaard 
et al., 2011, 2013). To understand how historical climate has var-
ied, pollen records have often been used to reconstruct Quaternary 
paleo-environments, evidencing possible stable areas for genetic 
diversity increasing after Pleistocene climatic oscillation (Anhuf 
et al., 2006; Buzatti et al., 2018; de Oliveira Bezerra et al., 2019). 
In South America, there is considerable debate whether currently 
forested areas such as the Amazon basin may previously have been 
savannah, and about the consequences for species diversification in 
the area (Colinvaux & De Oliveira, 2001; Pennington & Ratter, 2006; 
Richardson, 2001). In this study we consider the possible impacts of 
these dynamics on the mating system of a widely distributed tree 
species associated with open, savannah areas.

We chose Curatella americana L. (Dilleniaceae) as our species 
model as it is one of the main pollen types used to reconstruct the 
history of South American savannah environments (Absy et al., 1997; 
Behling, 1995). Moreover, the association of this species with savan-
nahs and its mixed mating system (Rech et al., 2018) makes C. americana 
a suitable model to address ecological questions about spatial variabil-
ity and historical climate stability on plant mating systems. Previous 
studies have shown that areas of South American savannah have var-
ied in size throughout the Neogene (Ledru et al., 2006; Pennington & 
Ratter, 2006), and that the disjunct areas of savannah present nowadays 
in Pará, Roraima, and other areas of Brazil were probably connected and 
separated many times over the Quaternary (Adrian Quijada-Mascareñas 
et al., 2007; Werneck, 2011). At the present time, C. americana is likely 
to be found in most areas of the savannah, also known as the Cerrado, in 
Brazil (Ratter et al., 2003). It is reported even in small areas of savannah 
surrounded by forest at the Amazon region (Magnusson et al., 2008; 
Ratter et al., 2003), thought have been isolated at least from the mid 
Holocene onward (Mayle & Power, 2008; Werneck, 2011).

Despite the potential for an important relationship among plant–pol-
linator interactions, mating system, and past and current climate, this re-
lationship has never previously been empirically tested and addressed. 
To gain insight into current and historical drivers of population-level plant 
mating systems, in this study we investigated the spatial structure and the 
determinants of the pollination and mating systems of C. americana across 
a latitudinal gradient of Brazilian savannah areas, considering both histor-
ical and current climates. Specifically, we ask: (a) How do Quaternary and 
current climates affect the level of cross- and autogamous pollination)? (b) 
How does current pollinator abundance and functional diversity relate to 
plant mating system? (c) How does mating system relate to fruit and seed 
quantity and quality in Curatella americana?

2  |  METHODS

2.1  |  Study sites and species

We studied ten populations of Curatella americana in three disjunct 
areas of savannah (Table S1, Figure 1). Vegetation physiognomies 
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are very similar among sites, but in general plant species diversity 
decreases northward (Bridgewater et al., 2004; Ratter et al., 2003). 
We observed animal pollinators and performed experiments on C. 
americana at all the studied sites. The species flowers from June to 
September in Central Brazil, mid-August to early October in Pará 
state, and October and November at Roraima state. Flowers are 
white, pentamerous and grouped into dense inflorescences, and 
each flower stays receptive for three to five hours for one single day 
(see Rech et al., 2018 for more details).

2.2  |  Mating system

In order to study the reproductive system of C. americana in situ 
we applied the following pollination tests: hand-cross-pollination, 
hand-self-pollination, autogamous self-pollination and natural pol-
lination. All pollination tests were performed with flowers previ-
ously bagged using cloth insect exclusion bags, except for natural 
pollination, which involved counting and tagging flowers exposed 
to flower visitors. In order to mitigate possible differences related 
to resource allocation we always performed the pollination tests on 
the same branch (considered as a functional unit). The number of 

tested flowers was always higher than 20 flowers per individual and 
a mean of 15 different individuals per test per population. In two of 
the studied areas (Nova Xavantina and Caldas Novas) we chose 12 
individuals and compared the fruit weight from self (n = 107) and 
cross (n = 102) pollinated flowers, which may represent seed quality 
(Coomes & Grubb, 2003).

2.3  |  Flower visitation and pollination

For all populations we recorded daily flower visitors (species rich-
ness and abundance) from anthesis until the end of visitation. In 
order to quantify visitation, we counted all visits to an observable 
(and counted) set of flowers for ten minutes each half an hour for at 
least 20 hr (120 x ten minute sessions) in each population. All the vis-
itors touching anthers and/or stigmas were considered and scored 
as potential pollinators. After observing behavior, flight distance 
and pollinator size, we grouped the pollinators into two categories: 
(a) Large-sized bees, and (b) Others, which includes bees the same 
size or smaller than Apis mellifera, beetles, flies and wasps. We sepa-
rated pollinators according to size because flight range correlates 
with body size (Araújo et al., 2004; Gathmann & Tscharntke, 2002; 

F I G U R E  1  Distribution of ten populations of Curatella americana on Brazilian savannahs (adapted from Rech et al., 2018). Numbers follow 
Table S1
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Greenleaf et al., 2007). Based on this premise, we expected a higher 
level of cross-pollination by large-sized bees.

2.4  |  Statistical analysis

To test for differences in fruit set related to the mating system and 
the regions, we used a generalized linear mixed model assuming a 
binomial distribution. The fixed factors were region, pollination ex-
periment treatment, and the interaction between them. The random 
factors were the individuals nested within sites and these nested 
within regions. Our response variable was the production of a fruit 

from each flower. We performed the models with all fixed factor com-
binations and only a fixed intercept (Null Model), always keeping the 
random factor. For the fruit weight comparison we used pollination 
treatment (self- and cross-pollination) as predictors and generated 
models using individuals as random factors. All the alternative models 
were built removing factors or interactions between factors from the 
full model. A null model using only the intercept was also considered. 
In order to compare the generated models we used the Akaike in-
formation criterion—AIC (Burnham & Anderson, 2004). All tests and 
models were performed in the R environment (R Core Team, 2018).

For each studied site, we modeled the climate changes since 
Last Glacial Maximum (LGM) by estimating the mean annual 

TA B L E  1  Multiple regression models using contemporary and historical climate stability to predict pollination mode in Curatella americana L.

Autogamous pollination Natural pollination

Σ wi Averaged MAM Σ wi Averaged MAM Σ wi Averaged MAM Σ wi Averaged MAM

MAT 0.06 +0.14 – 0.09 +0.11 – 0.04 −0.04 – 0.04 −0.04 –

MAP 0.08 +0.05 – 0.11 −0.23 – 0.05 +0.04 – 0.05 +0.03 –

MAT seas 0.11 −0.30 – 0.15 −0.36 – 0.99 +0.91 +0.91** 0.99 +0.91 +0.91**

MAP seas 0.21 +0.53 – 0.61 +0.62 – 0.05 +0.09 – 0.05 +0.09 –

MAT anomaly 0.79 +0.73 +0.74* 0.06 −0.12 – –

MAP anomaly 0.22 −0.45 – 0.08 +0.16

AICc −3.821 −11.098 −11.098

Moran's I ≤0.39NS  ≤0.01NS  ≤0.01NS 

CN 1 1 1

R2 0.55 0.83 0.83

R2
adj 0.55 0.83 0.83

Hand-cross-pollination Hand-self-pollination

Σ wi Averaged MAM† Σ wi Averaged MAM£ Σ wi Averaged MAM Σ wi Averaged MAM

MAT 0.56 −0.72 −0.78** 0.31 −0.66 – 0.10 −0.06 – 0.14 −0.08 –

MAP 0.09 +0.14 – 0.08 −0.10 – 0.13 −0.25 – 0.19 −0.31 –

MAT seas 0.51 +0.74 – 0.64 +0.64 +0.59* 0.13 −0.29 – 0.18 −0.31 –

MAP seas 0.06 −0.21 – 0.04 −0.12 – 0.29 +0.47 – 0.47 +0.50 –

MAT anomaly 0.14 −0.32 – 0.53 +0.58 –

MAP anomaly 0.59 +0.54 +0.51* 0.19 −0.29 –

AICc −6.997 −8.84

Moran's I ≤0.27NS  ≤0.22NS 

CN 1 1.5

R2 0.61 0.82

R2
adj 0.61 0.80

Notes: The standardized regression coefficients are reported for ordinary least square (OLS) regression and reported for both an averaged model 
based on weighted wi and minimum adequate models (MAMs) (Diniz-Filho et al., 2008). For all MAMs, we give AICc, the Condition Number (CN), 
Moran's I (significance tested using 5 distance classes and applying a permutation test with 10,000 iterations), and coefficients of determination 
(R2 and R2adj ). We did not assign any MAM if all variables in the best-fit model were non-significant. Notice that historical climate stability is 
represented by temperature and precipitation anomaly between 21,000 years ago and now. As these two estimates of climate stability were strongly 
intercorrelated (Table S2), we separately modeled temperature anomaly (grey columns) and precipitation anomaly (white columns) effects on the 
output of each pollination experiments. The results are qualitatively the same if using temperature and precipitation velocity as estimates of climate 
stability (results not shown).
NSnon-significant. †One model was equally fit (i.e., ∆AICc ≤ 2) containing the following variables: 1) MAT seas. £two models were equally fit: 1) MAT; 
2) MAT Seas. 
**p < 0.01; *p < 0.05. 
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temperature (MAT_LGM) and annual precipitation (MAP_LGM) at 
each location for 21ky, according to the Community Climate System 
Model (CCSM) (Gent et al., 2011). We also extracted the current 
values of temperature (MAT_Current) and precipitation (MAP_
Current) from the Global Climate Data (Worldclim 1.4 - http://
www.world clim.org/). For each site, we calculated the anomalies 
and velocities of change in temperature (MAT_Velocity_21) and 
precipitation (MAP_Velocity_21), as the long-term average over 
the last 21ky. Both climate anomaly and velocity are measures 
of climate stability (or climate change), but they are calculated in 
two different ways. Whereas climate anomaly simply is the differ-
ence in climatic conditions between two time periods (today and 
21,000 years ago), climate velocity integrates macroclimatic shifts 
(i.e., anomalies) with local spatial topoclimate gradients. Velocity is 
calculated by dividing the rate of climate change through time (i.e., 
anomaly) by the local rate of climate change across space (Sandel 
et al., 2011). All calculations are based on a 2.5 min geographical 
resolution.

We then estimated the effect of climate and pollinator activity 
on pollination mode. Due to the modest sample size of populations 
(n = 10) and some predictor variables being strongly correlated (i.e., 
r ≥ 0.6; Table S2), we took the following modeling approach. First, 
we modeled the effect of climate on pollination mode using current 
and past climate predictors, identifying minimum adequate models 
(MAMs) using the approach outlined in Diniz-Filho et al. (2008). As 
the temperature and precipitation anomalies used as a measure of 
past climate stability were strongly correlated, we modeled the ef-
fect of temperature and precipitation anomaly separately. The effect 
of past climate stability was also tested using modeled temperature 
and precipitation velocity instead of anomaly, giving qualitatively 
the same results (not shown). Second, we tested whether the four 
pollinator variables (pollinator richness, visitation frequency, and 
proportion of large bee visitation calculated both with and without 
the exotic honey bee) were significantly related to pollination mode. 
To do this we used single correlation tests using traditional non-spa-
tial correlation analysis and correcting the degrees of freedom using 
Dutilleul's (1993) method (Table 1), followed by models testing 
whether each of these pollinator activity variables may have other or 
additional effects from climate. We examined this by again following 
the approach of Diniz-Filho et al. (2008) to identify MAMs, but this 
time only considering climate variables included in the above-identi-
fied MAMs and each of the four pollinator variables.

For all analyses, MAP, MAP anomaly, MAP velocity and MAT ve-
locity were Log10-transformed, pollination visitation frequency was 
square root transformed, and all proportional measures (i.e., pollina-
tion mode variables and large bee predictors) were arcsine-square 
root transformed. All other variables were left untransformed. All 
analyses were conducted using the software Spatial Analysis in 
Macroecology, SAM 4.0 (Rangel et al., 2010).

3  |  RESULTS

3.1  |  Pollination and mating system variation

The main flower visitors and potential pollinators of C. americana 
flowers were bees of different sizes (more details in Rech et al., 2018). 
Beetles were also recorded at all populations, but they only ate an-
thers and copulated on the flowers, with little, if any, importance 
as pollinators. In eight out of ten populations, flies and wasps were 
also recorded as flower visitors; however, they were visiting with a 
very low frequency; only in Jatai, Caldas Novas and Santarém did 
they perform more than 1% and never more than 5% of total visits. 
During their visits, they ate pollen directly from the anthers (flies) 
and did not always touch anthers and stigmas (flies and wasps).

In all populations, cross-pollinated flowers set more fruit than 
self-, natural- or autogamously pollinated flowers (Table 2). Cross-
pollination (measured by fruit set) was negatively correlated with 
self-pollination (r = −0.87, p = 0.009). Fruit set from cross- and 
self-pollination were more contrasting in the southern and more 
similar in the northern populations, showing that out-crossing de-
creases from south to north (Table 2). The analysis of fruit weight 
according to pollination test and site showed that only pollination 
treatment was important, with hand cross-pollination producing 
heavier fruit than self-, natural- or autogamously pollinated flowers 
(Figure 2, Table 3). This tells us that the populations that were stud-
ied are pollen limited and therefore that the reproductive success of 
plants is more likely to be influenced by climate variables, if those 
variables in turn affect pollinator numbers.

The results of pollination tests in C. americana were best ex-
plained by the full model including region, pollination treatments, 
and the interaction between them (Table 4). Considering only the 
additive effects of region and reproductive system makes the model 
nearly as likely as including only the reproductive system regardless 

TA B L E  2  Population means of the proportion of fruit set in the pollination treatments of Curatella americana L. at ten studied populations 
in Brazil

Ama Faz BV Stm Cui Man Poc Nxav Cnov Jat

Cross-pollination 0.52 0.54 0.33 0.66 0.66 0.83 0.81 0.79 0.82 0.73

Hand selfing 0.53 0.29 0.22 0.06 0.13 0.37 0.08 0.17 0.43 0.20

Autogamous self 0.21 0.24 0.23 0.05 0.06 0.06 0.05 0.02 0.29 0.20

Natural pollination 0.32 0.15 0.23 0.28 0.65 0.48 0.62 0.63 0.72 0.34

Notes: At the region of Roraima—BV: Boa Vista, Faz: Fazenda Bamerindus, Ama: Amajari; Pará region—Stm: Santarém; Mato Grosso region—Cui: 
Cuiabá, Man: Manso, Poc: Poconé, Nxav: Nova Xavantina, and Goiás region—Jat: Jatai, Cnov: Caldas Novas.

http://www.worldclim.org/
http://www.worldclim.org/
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of region, reinforcing that these factor are interacting. The repro-
ductive system of the species was structured on a regional scale, and 
although there are differences among populations inside a region, 
differences among regions were greater. Although there is a strong 
difference in the reproductive tests among regions, it is possible to 
see that the level of autogamous pollination is highly variable among 
individuals within a given region and, even in the North region it 
is possible to find some individuals with very low fruit set inside 
bagged inflorescences (Figure 3).

3.2  |  Historical and current climate analyses

Both current and past climate influenced the reproductive system 
of C. americana. Natural pollination was highly related to the yearly 
seasonality, that is, current fluctuations in temperature. This was 
significant both in non-spatial and spatial correlation analysis, and 
alone explained 91% of the variation in natural pollination (Table 5). 
Natural pollination was also positively related to visitation by large 
bees (79%), and negatively correlated to mean annual temperature 
(63%) and mean annual temperature velocity (76%). Autogamous 
pollination was higher in areas with more temperature anomaly, that 
is, historical climatically unstable areas.

4  |  DISCUSSION

The current pollination mode and mating system of C. americana in 
the Brazilian savannah is the result of both historical and contem-
porary factors. Quaternary climate instability has clearly influenced 
the level of autogamous self-pollination in populations, whereas con-
temporary temperature seasonality and proportion of large bee visi-
tation determined the level of cross-pollination. This indicates that 
autogamous self-pollination is likely to occur in areas that have expe-
rienced higher climate variability that subjected populations to local 
extinctions and re-colonization events. This has occurred many times 
in the past, as pollen records indicate in the northern (Rodrigues & 
Absy, 2006) and southern edge of C. americana distribution in Brazil 
(Salgado-Labouriau et al., 1997). In agreement with this, genetic data 
on the phylogeography of C. americana indicated recent expansion in 
most populations (Canuto, 2011). Most of the literature on Brazilian 
savannah biogeography agrees that its area varied considerably dur-
ing the Quaternary (Adrian Quijada-Mascareñas et al., 2007; Anhuf 
et al., 2006; Pennington & Ratter, 2006; Werneck, 2011), and this 
has impacted the mating systems of C. americana populations.

Higher levels of autogamy in the northern populations were 
the results of a weaker restriction to self-pollen germination and a 
shorter distance between stigma and anthers (low herkogamy), prob-
ably in response to mismatches to pollinator distributions during his-
torical fluctuations in climate (Rech et al., 2018). The occurrence of 
autogamous self-pollination as a reproductive assurance mechanism 
has been suggested in many other plant species (reviewed in Eckert 
et al., 2006). For natural pollination, current temperature and the 

F I G U R E  2  Fruit weight comparison between self- and cross-
pollinated fruit in Curatella americana L.

TA B L E  3  Result of the model selection using ∆AIC for fruit 
weight considering pollination treatment (cross- and self-
pollination) and site (Nova Xavantina and Caldas Novas) in Curatella 
americana L.

Model
∆AIC 
value

Degrees of 
Freedom

Pollination treatment 0.0 4

Null model 6.3 3

Pollination treatment + Site 6.4 5

Site 12.3 4

Pollination treatment + Site 
+Interaction

15.0 6

Note: Individuals were considered random factors.

TA B L E  4  Results of the selection of models using ∆AIC for fruit 
set in Curatella americana L.

Model ∆AIC
Degrees of 
Freedom

Full 0.0 13

Full without interaction 1,523.9 7

Only reproductive system 1,545.7 5

Only region 4,813.5 4

Null 4,846.8 2

Notes:: The full model included region (South, Middle, and North) and 
reproductive systems (cross-, self-, autogamous, and natural pollination) 
as fixed factors, the interaction between them and individuals and sites 
(replication) as random factors. “Full without interaction” was similar to 
the full model except for the interaction between fixed factors. “Only 
reproductive system” did not considered region, while “Only region” 
did not considered reproductive system, and the null model is only the 
intercept and the random factors (individual and population).
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proportion of the total visits carried out by large bees were more 
important factors. Moreover, the proportion of large bees was cor-
related to several historical and current climate variables (MAT, MAT 
seasonality and velocity), preventing us from separating the effect 
of temperature on pollinators or, alternatively, direct temperature 
effects on natural pollination.

Most of the studied populations in central Brazil (Populations 
5, 6, 7, and 8—Figure 1) occur in a geologically old savannah area 
(Terribile et al., 2012), where the longer distance pollen flow me-
diated by large bees and climate stability may be acting to pro-
mote the reproduction of individuals better able to cross-pollinate 
(Koski et al., 2018; Sirois-Delisle & Kerr, 2018). Considering that 
cross-pollination produces heavier—and presumably higher qual-
ity—fruit, the progeny from this fruit will be expected to outcom-
pete or survive longer periods of unfavorable conditions than the 
ones from self-pollination (Coomes & Grubb, 2003). However, 
increased dispersal is selected when there is local adaptation to 
climate instability, thus, self-fertilization may be favored between 
expansion and contraction of the range margins by providing re-
productive assurance (Hargreaves & Eckert, 2014). In line with 
this rationale, the two populations in the southern edge of the 
Brazilian savannah (Caldas Novas and Jatai) both showed moder-
ate levels of autogamous self-pollination, consistent with recent 
colonization events followed by east and south expansion of sa-
vannah limits (Salgado-Labouriau et al., 1997; Souza et al., 2017). 
In addition, the high levels of cross-pollination are supported by a 
greater proportion of large bee pollination found in southern pop-
ulations. Hand pollination of plants in the population from Jatai 
(pop 9, Figure 1) resulted in high fruit set, while natural pollination 
was low. We suspect that this may be due to the large numbers 
of honey bees (Apis mellifera), which were responsible for around 
90% of the flower visits, as this species is often a poor pollinator 
for many plant species (Rech et al., 2018; Westerkamp, 1996).

A gradient of pollinator species richness and abundance reduc-
ing from south to north was previously reported for woody plants in 
Brazilian savannahs (Bridgewater et al., 2004). There is a suggestion that 
this pattern, which contrasts to the expected tendency of increasing 

diversity toward the Equator, could be related to climatic instability in 
the past (Werneck et al., 2012). Our results for pollinator richness also 
point out the importance of historical climate for the number of bee 
species (see Table S11). This reversed latitudinal pattern of diversity 
is also found in other invertebrate groups, such as ants (Vasconcelos 
et al., 2018). Therefore, perhaps the patterns observed for woody plant 
species diversity in Brazilian savannah could also be applicable to other 
groups of organisms, such as the ones that interact with plants (polli-
nators, seed dispersers and herbivores), as observed in some systems 
(Chen et al., 2019; Moreira et al., 2018; Schemske et al., 2009).

Although the absence of biotic pollination may reduce plant species 
distribution in isolated environments (Lord, 2015), higher cross-pol-
lination in cooler and more seasonal places is in accordance with the 
pattern of global bee diversity, which peaks in subtropical areas with 
higher seasonality (Michener, 2007, Ollerton, 2017). Reinforcing the 
idea of the mediating role of bees to promote cross-pollination, both 
hand-self- and autogamous pollination showed no relationship with 
any of the variables related to the pollinators. Moreover, cross- and 
natural pollination were related to the proportion of large bees, and 
not to pollinator species richness and visitation frequency, indicating 
that not all visitors are equally good pollinators and not all proxies are 
equally realistic for pollinator quality (Popic et al., 2013; Sakamoto & 
Morinaga, 2013). Moreover, it was already experimentally shown that 
functional complementarity is far more important than the simple in-
crement in pollinator species number (Fründ et al., 2013).

In conclusion, our results indicate that historical instability 
in climate has favored autogamy, while pollinators are currently 
modulating the level of cross-pollination. Although the direct 
impact of historical climate on pollinator communities should be 
examined in future studies, this association of historical climate 
instability to autogamy suggests a reproductive assurance strat-
egy that may have benefitted the species during unstable condi-
tions in the past (Rech et al., 2018). This strategy could be a key 
factor explaining why C. americana is one of the most conspicuous 
and widely distributed woody species in Neotropical savannahs 
(Ratter et al., 2003). We also corroborate here the already pro-
posed effect of high functional diversity of pollinators buffering 

F I G U R E  3  Box plot comparing mean fruit set according to the mating system of Curatella americana L. in controlled pollination tests. 
Region names follow Table S1
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influences of climate dynamics, since places with more species 
of large-sized bees were more likely to remain functional when 
the environment changed and provide current higher levels of 
cross-pollination (Bartomeus et al., 2013). Although there are 
many aspects of pollination and historical climate relationships 
to be clarified, our results support the idea that historical climate 
dynamics are fundamental in determining pollination mode (level 
of autogamy), suggesting that plant–pollinator interactions may 
be even more sensitive to climate instability than species them-
selves (Bartomeus et al., 2013).
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